|
The anomalous Hall effect (AHE) is a fundamental phenomenon related to magnetism in solid-state physics, in which a transverse voltage drop is induced by a longitudinal electric field [1, 2]. Although the effect was well known in ferromagnets for more than a century, it was recently found in antiferromagnets as well. In this talk, I will review the history and latest progress of the AHE in both ferromagnets and antiferromagnets. First, I will show that ferromagnetic MF3 (M = Pd, Mn) are high-quality nodal chain spin-gapless topological semimetals with 100% spin-polarized transport properties [3, 4]. The dominant intrinsic origin is found to originate entirely from the gapped nodal chains without the entanglement of any other trivial bands. The side-jump mechanism is predicted to be negligibly small, but the skew scattering enhances the intrinsic Hall and Nernst signals significantly. Second, I will present the spin-chirality-dependent anomalous Hall and Nernst effects in coplanar noncollinear antiferromagnets Mn3XN (X = Ga, Zn, Ag, and Ni) [5], as well as the topological magneto-optical effects and their quantization in noncoplanar antiferromagnets γ-FexMn1−x and K0.5RhO2 [6]. Beyond ferromagnetism and noncollinear antiferromagnets, collinear antiferromagnets with PT symmetry can surprisingly host the AHE, as well as other anomalous transport effects. Lastly, I will discuss an unconventional AHE via the spin-canting effect induced by the in-plane magnetic field in PT-symmetric antiferromagnetic systems, such as the well-known Dirac semimetal CuMnAs and a heterodimensional VS2-VS superlattice [7]. [1] Yao et al., PRL 92, 037204 (2004); PRB 75, 020401(R)(2007). [2] Nagaosa et al., Rev. Mod. Phys. 82, 1539 (2010). [3] Zhang et al., PRL 124, 016402 (2020). [4] Zhou et al., PRL 129, 097201 (2022). [5] Zhou et al., PRB 99, 104428 (2019); PRM 4, 024408 (2020). [6] Feng et al., Nat. Commun. 11, 118 (2020); Yang et al., PRB 106, 174427 (2022). [7] Cao et al., PRL 130, 166702 (2023); Zhou et al., Nature 46, 609 (2022); PRB 108, 085120 (2023). 报告人简介:姚裕贵,分别在南开大学、中科院上海光机所和力学所获得物理学学士学位、光学硕士学位和力学博士学位。北京理工大学杰出教授、美国物理学会会士、基金委创新群体首席专家、国家重点研发计划项目首席科学家,多次入选国家级领军人才计划,享受政府特贴。曾荣获国家自然科学奖、教育部自然科学奖、中国科学院杰出科技成就奖、北京市自然科学奖、首批北京市先进科研工作者、北京市有突出贡献人才、北京最美科技工作者等奖项。作为院长,带领北理工物理学科入选国家一流学科建设名单。 研究领域为计算物理和凝聚态物理,发展了反常输运物理量与拓扑不变量的第一性原理计算方法,部分成果写进了国外流行教科书,是该领域开拓者之一;引领了硅烯等二维拓扑材料的研究,所提出的理论模型被冠名;完成了三维晶体中准粒子的分类并建立了百科,为搜寻和实现相关演生粒子提供了理论指导;发展了含能材料能量释放性能及感度快速检测技术,填补了相关领域技术空白。至今共发表SCI论文280余篇(含35篇PRL、18篇NATURE及子刊),在反常输运、硅烯、石墨烯、拓扑材料与物性等领域的研究成果具有重要国际影响,共被引2万余次,10篇超过500次,连续5年入选科睿唯安全球“高被引科学家”名单。 |