|
Skin effect, experimentally discovered in one dimension, describes the physical phenomenon that on an open chain, an extensive number of eigenstates of a non-Hermitian hamiltonian are localized at the end(s) of the chain. Here in two and higher dimensions, we establish a theorem that the skin effect exists, if and only if periodic-boundary spectrum of the hamiltonian covers a finite area on the complex plane. This theorem establishes the universality of the effect, because the above condition is satisfied in almost every generic non-Hermitian hamiltonian, and, unlike in one dimension, is compatible with all spatial symmetries. We propose two new types of skin effect in two and higher dimensions: the corner-skin effect where all eigenstates are localized at one corner of the system, and the geometry-dependent-skin effect where skin modes disappear for systems of a particular shape, but appear on generic polygons. An immediate corollary of our theorem is that any non-Hermitian system having exceptional points (lines) in two (three) dimensions exhibits skin effect, making this phenomenon accessible to experiments in photonic crystals, Weyl semimetals, and Kondo insulators. 报告人简介:方辰2004年于北京大学获学士学位,2011年于美国Purdue University获物理学博士学位。他先后在美国Princeton University和Massachusetts Institute of Technology任博士后。方辰于2015年11月回国,任中国科学院物理研究所副研究员,2018年8月任研究员至今。方辰的研究方向包括拓扑能带理论、非厄米能带理论,量子多体动力学等。回国之后的工作成果包括:首个提出三维高阶拓扑绝缘体的概念,确定了能带不可约表示和拓扑不变量之间的定量关系,建立了首个拓扑材料计算数据库,首次提出非厄米趋肤效应的拓扑起源等。方辰于2021年获亚太物理学会“杨振宁”奖,2021年入选科睿唯安“高引用研究者”。 |
|